hidden

State of the Union: Cryoablation vs Radiofrequency Ablation for Atrial Fibrillation in the United States

Background

The concept of catheter ablation for atrial fibrillation (AF) was pioneered by Michel Haissaguerre from Bordeaux, France. In their landmark paper, Haissaguerre et al. described that the majority of triggers for atrial fibrillation (AF) can be mapped in the sleeves of muscles that extend into the pulmonary veins, and ablating these triggers leads to freedom from AF 1. This approach ultimately evolved into pulmonary vein isolation which remains one of the most commonly performed electrophysiological procedures today.

Essentially, the two common approaches involve radiofrequency ablation (RFA) or cryoablation (CRA). In general, most of the catheter guidance in RFA is with the help of electroanatomical mapping, and point by point lesions are made by heating the tissue, but it has a longer operator learning curve. CRA requires more extensive fluoroscopic guidance and can create circular lesions in a single step using a balloon that causes cellular necrosis by freezing the tissue 3. Since these two techniques differ in the source of energy, fluoroscopy time, need for electroanatomic guidance, learning curve, and procedure time, an important question arises: what is the best energy source to perform catheter ablation?

Multiple randomized controlled trials and observational studies have attempted to answer this question. A recent meta-analysis of 14 randomized trials and 34 observational studies that included 7951 patients undergoing CRA vs 9641 patients undergoing RFA showed that over a mean follow up of 14 ± 7 months, CRA reduced the incidence of AF recurrence as compared with RFA (RR 0.86; 95% CI 0.78-0.94; p=0.001) . While the rate of phrenic nerve palsy was higher in CRA, rates of other complications like pericardial effusion, tamponade, and vascular complications were lower as compared with RFA. Interestingly, CRA procedure time was shorter than RFA by almost 20 mins4.

While this meta-analysis is based on results of multiple randomized and observational studies done under controlled settings, there is a paucity of real-world data comparing CRA vs RFA. This important question was addressed by Friedman et al in their analysis of Get With The Guidelines® – Atrial Fibrillation (GWTG-AFIB) registry 5 which gives a comprehensive understanding of the state of union regarding CRA vs RFA for AF (Figure 1)**.

GWTG-AFIB Registry

It is a large hospital-based quality improvement registry that is based on a partnership between the American Heart Association and Heart Rhythm Society and contains data on patients with AF or atrial flutter who have an overnight stay at a hospital in the United States 6.

Research Question

What are the differences in real-world patient and peri-procedural characteristics and in-hospital outcomes between CRA vs RFA?

Patient Characteristics

In total 5247 patients were included with 1465 undergoing CRA and 3782 undergoing RFA at 33 different sites. More patients undergoing CRA had paroxysmal AF (60% vs 48%) and no prior history of AF ablation (87.5% vs 73.8%) with similar CHA2DS2-VASc scores5.

Procedural Characteristics

The procedure times were shorter with CRA (129 min vs 179 min, p<0.001) but the ablation times were similar (27 min vs 35 min, p=0.15). There was an increase in fluoroscopy time with CRA vs RFA (19 min vs 11 min, p<0.001). The use of intracardiac echocardiography and electro anatomic mapping were less common with CRA; 87.3% vs 93.9%, p<0.001 and 87.7% vs 94.6%, p<0.001 respectively 5.

In-Hospital Complications

Phrenic nerve injury was more common with CRA (0.9% vs 0.1%, p=0.0001). Total complications were more with RFA (5.4% vs 2.3%, p<0.0001) however these were attributed to more volume overload and other events. The risk of any complication was less common with CRA (OR 0.45, 95% CI 0.25-0.79, p =0.0056).

Implications

This study gives an important insight into the contemporary practice of CRA vs RFA in the United States. Overall, despite the increasing popularity of CRA, RFA still remains the most common type of catheter ablation for AF. It appears that patients undergoing RFA are in general more complex with a history of prior ablation or persistent AF, and more likely to have co-morbidities like heart failure and obstructive sleep apnea. These differences in the patient characteristics like history of persistent AF may explain the observed differences in complications with RFA. Another interesting observation from this study is that more RFA were performed at academic/teaching hospitals (91.7% vs 83.8%) and the likely explanation is that the procedure requires more time and expertise than is generally available at larger academic centers.

An encouraging observation from this real-world cohort of patients is that the rate of nerve injury was lower in both CRA (0.9%) and RFA (0.1%) arms as compared to the large randomized FIRE and ICE trial 3 (CRA 2.7%, RFA 0%) and comparable to the meta-analysis by Fortuni 4 (transient phrenic nerve palsy with CRA 3.2% and with RFA 0.05; permanent phrenic nerve palsy with CRA 0.6% and with RFA 0.04% ).

Future Directions

In future a comparison of longitudinal outcomes like recurrence of AF, quality of life, AF symptoms, incidence of heart failure, incidence of stroke, incidence of thromboembolic complications, AF related hospitalizations, cost of care and mortality, between CRA and RFA will be important.

Figure 1: Comparison of patient and periprocedural characteristics and in-hospital complications between cryoablation and radiofrequency ablation from Get With The Guidelines® atrial fibrillation registry.

**This study was funded by a GWTG-AFib Early Career Investigator Award.  

References

  1. Haïssaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, Quiniou G, et al. Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine 1998;339:659–666. doi:10.1056/NEJM199809033391003.
  2. Wellens Hein J. J. Pulmonary Vein Ablation in Atrial Fibrillation. Circulation 2000;102:2562–2564. doi:10.1161/01.CIR.102.21.2562.
  3. Kuck K-H, Brugada J, Fürnkranz A, Metzner A, Ouyang F, Chun KRJ, et al. Cryoballoon or Radiofrequency Ablation for Paroxysmal Atrial Fibrillation. New England Journal of Medicine 2016;374:2235–2245. doi:10.1056/NEJMoa1602014.
  4. Fortuni F, Casula M, Sanzo A, Angelini F, Cornara S, Somaschini A, et al. Meta-Analysis Comparing Cryoballoon Versus Radiofrequency as First Ablation Procedure for Atrial Fibrillation. Am J Cardiol 2020;125:1170–1179. doi:10.1016/j.amjcard.2020.01.016.
  5. Friedman DJ, Holmes D, Curtis AB, Ellenbogen KA, Frankel DS, Knight BP, et al. Procedure characteristics and outcomes of atrial fibrillation ablation procedures using cryoballoon versus radiofrequency ablation: A report from the GWTG-AFIB registry. Journal of Cardiovascular Electrophysiology 2021;32:248–259. doi:https://doi.org/10.1111/jce.14858.
  6. Get With The Guidelines- AFIB Registry. WwwHeartOrg n.d. https://www.heart.org/en/professional/quality-improvement/get-with-the-guidelines/get-with-the-guidelines-afib (accessed March 15, 2021).

“The views, opinions and positions expressed within this blog are those of the author(s) alone and do not represent those of the American Heart Association. The accuracy, completeness and validity of any statements made within this article are not guaranteed. We accept no liability for any errors, omissions or representations. The copyright of this content belongs to the author and any liability with regards to infringement of intellectual property rights remains with them. The Early Career Voice blog is not intended to provide medical advice or treatment. Only your healthcare provider can provide that. The American Heart Association recommends that you consult your healthcare provider regarding your personal health matters. If you think you are having a heart attack, stroke or another emergency, please call 911 immediately.”

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hidden

Can artificial intelligence save our lives?

The role of artificial intelligence (AI) in our life is advancing rapidly and is making strides in the early detection of diseases. The consumer market is composed of wearable health devices that enables continuous ambulatory monitoring of vital signs during daily life (at rest or physical activity), or in a clinical environment with the advantage of minimizing interference with normal human activities1. These devices can record a wide spectrum of vital signs, including: heart rate and rhythm, blood pressure, respiratory rate, blood oxygen saturation, blood glucose, skin perspiration, body temperature, in addition to motion evaluation. However, there is a lot of controversies whether these health devices are reliable and secure tools for early detection of arrhythmia in the general population2.

Atrial fibrillation (afib) is the most common arrhythmia currently affecting over 5 million individuals in the US and it’s expected to reach almost 15 million people by 2050. Afib is associated with an increased risk of stroke, heart failure, mortality, and represents a growing economic burden3. Afib represents a diagnostic challenge, it is often asymptomatic and is often diagnosed when a stroke occurs. Afib represents also a long term challenge and often involves hospitalization for cardioversion, cardiac ablation, trans-esophageal echo, anti-arrhythmic treatment, and permanent pacemaker placement. However, if afib is detected, the risk of stroke can be reduced by 75% with proper medical management and treatment3.

Physicians need fast and accurate technologies to detect cardiac events and assess the efficacy of treatment. A reliable, convenient and cost-effective tool for non-invasive afib detection is desirable. Several studies assessed the efficacy and feasibility of wearable technologies in detecting arrhythmias. The Cleveland Clinic conducted a clinical research where 50 healthy volunteers were enrolled. They tested 5 different wearable heart rate monitors including: (Apple Watch, Garmin Forerunner, TomTom Spark Cardio, and a chest monitor) across different types and intensities of exercises (treadmill, stationary bike and elliptical). The study found that the chest strap monitor was the most accurate in tracking the heart rate across different types and intensities of exercises4.

Apple and Stanford’s Apple Heart Study enrolled more than 419,297 Apple Watch and iPhone owners. Among these users, 2,161 (roughly 0.5%) received a notification of an irregular pulse. Of those who received the notifications, only about 450 participants scheduled a telemedicine consultation and returned a BioTelemetry ECG monitoring patch. When the Apple Watch notification and ECG patch were compared simultaneously, researchers found 71% positive predictive value, and about 84% of the cases were experiencing Afib at the time of the alert. Additionally, 34% of participants whose initial notification prompted an ECG patch delivery were later diagnosed with Afib. This finding shows that Apple watch detected afib in about one-third of the cases which is “good” for a screening tool considering the “intermittent nature of afib and that it may not occur for a whole week” says Dr. Christopher Granger, a professor of medicine at Duke University who participated on the steering committee for the Apple Heart study5.

These studies are observational studies and are not outcome-driven. They are not randomized and are not placebo-controlled. There are potentials for false negatives, where the Apple watch fails to detect the afib and false-positive where it detects arrhythmia that does not exist. Unfortunately, patients who are false negative don’t consult the physician about their symptoms of palpitations and shortness of breath since it provides false security. While patients with false-positive are sent unnecessarily to the clinic that could lead to further unnecessary tests and anxiety for the patient.

Is the Apple Watch ready to be used as a default screening tool to monitor the heart rate and rhythm in the general population and by physicians with patients with or at high risk for Afib is still unclear and warrant further studies. In conclusion, physicians should be cautious when using data from consumer devices to treat and diagnose patients.

The views, opinions and positions expressed within this blog are those of the author(s) alone and do not represent those of the American Heart Association. The accuracy, completeness and validity of any statements made within this article are not guaranteed. We accept no liability for any errors, omissions or representations. The copyright of this content belongs to the author and any liability with regards to infringement of intellectual property rights remains with them. The Early Career Voice blog is not intended to provide medical advice or treatment. Only your healthcare provider can provide that. The American Heart Association recommends that you consult your healthcare provider regarding your personal health matters. If you think you are having a heart attack, stroke or another emergency, please call 911 immediately.

References:

  1. Cheung, Christopher C., Krahn, Andrew D., Andrade, Jason G. The Emerging Role of Wearable Technologies in Detection of Arrhythmia. Canadian Journal of Cardiology. 2018;34(8):1083-1087. doi:10.1016/j.cjca.2018.05.003
  2. Dias D, Paulo Silva Cunha J. Wearable Health Devices-Vital Sign Monitoring, Systems and Technologies. Sensors (Basel). 2018;18(8):2414. Published 2018 Jul 25. doi:10.3390/s18082414
  3. Chugh, S., Sumeet, Havmoeller, J., Rasmus, Narayanan, F., Kumar, et al. Worldwide Epidemiology of Atrial Fibrillation: A Global Burden of Disease 2010 Study. Circulation. 2014;129(8):837-847. doi:10.1161/CIRCULATIONAHA.113.005119
  4. Wrist-Worn Heart Rate Monitors Less Accurate Than Standard Chest Strap. Medical Design Technology. http://search.proquest.com/docview/1875621494/. Published March 9, 2017.
  5. Turakhia, Mintu P., Desai, Manisha, Hedlin, Haley, et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: The Apple Heart Study. American Heart Journal. 2019;207:66-75. doi:10.1016/j.ahj.2018.09.002

 

 

hidden

Can artificial intelligence save our lives?

The role of artificial intelligence (AI) in our life is advancing rapidly and is making strides in early detection of diseases. The consumer market is composed of wearable health devices that enables continuous ambulatory monitoring of vital signs during daily life (at rest or physical activity), or in a clinical environment with the advantage of minimizing interference with normal human activities1. These devices can record a wide spectrum of vital signs including: heart rate and rhythm, blood pressure, respiratory rate, blood oxygen saturation, blood glucose, skin perspiration, body temperature, in addition to motion evaluation. However, there is a lot of controversy whether these health devices are reliable and secure tools for early detection of arrhythmia in the general population2.

Atrial fibrillation (afib) is the most common arrhythmia currently affecting over 5 million individuals in the US and it’s expected to reach almost 15 million people by 2050. Afib is associated with an increased risk of stroke, heart failure, mortality and represents a growing economic burden3. Afib represents a diagnostic challenge, it is often asymptomatic and is often diagnosed when a stroke occurs. Afib represents also a long term challenge and often involves hospitalization for cardioversion, cardiac ablation, trans-esophageal echo, anti-arrhythmic treatment, and permanent pacemaker placement. However, if afib is detected, the risk of stroke can be reduced by 75% with proper medical management and treatment3.

Physicians need fast and accurate technologies to detect cardiac events and assess the efficacy of treatment. A reliable, convenient and cost-effective tool for non-invasive afib detection is desirable. Several studies assessed the efficacy and feasibility of wearable technologies in detecting arrhythmias. The Cleveland clinic conducted a clinical research where 50 healthy volunteers were enrolled. They tested 5 different wearable heart rate monitors including: (Apple Watch, Garmin Forerunner, TomTom Spark Cardio, and a chest monitor) across different types and intensities of exercises (treadmill, stationary bike and elliptical). The study found that chest strap monitor was the most accurate in tracking the heart rate across different types and intensities of exercises4.

The Apple and Stanford’s apple Heart Study enrolled more than 419,297 Apple Watch and iPhone owners. Among these users 2,161 (roughly 0.5%) received a notification of an irregular pulse. Of those who received the notifications, only about 450 participants scheduled a telemedicine consultation and returned a BioTelemetry ECG monitoring patch. When the Apple Watch notification and ECG patch were compared simultaneously, researchers found 71% positive predictive value and about 84% of the cases were experiencing Afib at the time of the alert. Additionally, in 34% of participants whose initial notification prompted an ECG patch delivery were later diagnosed with Afib. This finding shows that Apple watch detected afib in about one third of the cases which is “good” for a screening tool considering the “intermittent nature of afib and that it may not occur for a whole week” says Dr. Christopher Granger, a professor of medicine at Duke University who participated on the steering committee for the Apple Heart study5.

These studies are observational studies and are not outcome driven. They are not randomized and are not placebo controlled. There are potentials for false negatives, where the Apple watch fails to detect the afib and false positive where it detects arrhythmia that does not exist. Unfortunately, patients who are false negative don’t consult the physician about their symptoms of palpitations and shortness of breath since it provides false security. While patients with false positive are sent unnecessarily to the clinic that could lead to further unnecessarily test and anxiety for the patient.

Is the Apple Watch ready to be used as a default screening tool to monitor the heart rate and rhythm in the general population and by physicians with patients with or at high risk for Afib is still unclear and warrant further studies.  In conclusion, physicians should be cautious when using data from consumer devices to treat and diagnose patients.

 

References:

  1. Cheung, Christopher C., Krahn, Andrew D., Andrade, Jason G. The Emerging Role of Wearable Technologies in Detection of Arrhythmia. Canadian Journal of Cardiology. 2018;34(8):1083-1087. doi:10.1016/j.cjca.2018.05.003
  2. Dias D, Paulo Silva Cunha J. Wearable Health Devices-Vital Sign Monitoring, Systems and Technologies. Sensors (Basel). 2018;18(8):2414. Published 2018 Jul 25. doi:10.3390/s18082414
  3. Chugh, S., Sumeet, Havmoeller, J., Rasmus, Narayanan, F., Kumar, et al. Worldwide Epidemiology of Atrial Fibrillation: A Global Burden of Disease 2010 Study. Circulation. 2014;129(8):837-847. doi:10.1161/CIRCULATIONAHA.113.005119
  4. Wrist-Worn Heart Rate Monitors Less Accurate Than Standard Chest Strap. Medical Design Technology. http://search.proquest.com/docview/1875621494/. Published March 9, 2017.
  5. Turakhia, Mintu P., Desai, Manisha, Hedlin, Haley, et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: The Apple Heart Study. American Heart Journal. 2019;207:66-75. doi:10.1016/j.ahj.2018.09.002

 

 

The views, opinions and positions expressed within this blog are those of the author(s) alone and do not represent those of the American Heart Association. The accuracy, completeness and validity of any statements made within this article are not guaranteed. We accept no liability for any errors, omissions or representations. The copyright of this content belongs to the author and any liability with regards to infringement of intellectual property rights remains with them. The Early Career Voice blog is not intended to provide medical advice or treatment. Only your healthcare provider can provide that. The American Heart Association recommends that you consult your healthcare provider regarding your personal health matters. If you think you are having a heart attack, stroke or another emergency, please call 911 immediately.

hidden

The Future of Wearable Technology & Detecting Atrial Fibrillation – An Update!

Last November at AHA18, I was lucky enough to catch a talk from one of the investigators, Dr. Marco Perez, working on the Apple Heart Study, where he described the goals of the project. I even wrote about it for the blog I wrote at AHA18 in Chicago, which you can find here.

To quickly recap, this unprecedented collaboration between Apple and Stanford is a progressive clinical trial that uses data from Apple Watch devices from over 400,000 participants. The main purpose of this study was to examine if atrial fibrillation (AFib) can be reliably diagnosed from irregular pulse notification data from wearable devices. In November, Dr. Perez mentioned that they wouldn’t have data until early 2019, and this past March, they released some results that are really exciting.

Highlights from the findings include:

  • Around 0.5% of participants received irregular pulse notifications, which was particularly important since people were concerned that these devices would potentially over-notify people.
  • The pulse detection algorithm of the Apple Watch has a 71% positive predictive value – this was compared to simultaneous electrocardiography patch recordings.
  • The majority of the time (84%) when participants received irregular pulse notifications, they were found to be in AFib at the time of the notification.
  • 1/3 of the participants who received irregular pulse notifications and were then followed up by using an ECG patch over a week later were found to have AFib. This isn’t entirely surprising since AFib is an intermittent condition, so it’s not uncommon for it to go undetected in subsequent monitoring.
  • 57% of people who received irregular pulse notifications sought medical attention afterwards.
  • A clinical trial could be conducted in this large-scale virtual manner

The last point is particularly important because this is the first study of its kind. It was almost completely virtual, at least from the standpoint that the researchers analyzing the data never once had any contact with the participants. Additionally, the scope of the number of people who were analyzed is impressive – 400,000 participants is quite the sample size, especially for someone like me who studies heart disease in mice!

Because AFib is an extremely common condition, affecting between 2-6 million people in the United States, that often goes undiagnosed, understanding that wearable technology can aid patients in detecting their condition is huge. Also, with the increase in technology in our health care sphere (specifically in cardiology), something that was expertly discussed by Dr. John Chen earlier this year on his blog is that this is just the beginning in understanding how wearable technology can help us treat disease. We now have another tool in our kit, and this one looks promising.

In Stanford’s press release, Dr. Perez said, “The performance and accuracy we observed in this study provides important information as we seek to understand the potential impact of wearable technology on the health system. Further research will help people make more informed health decisions.”

Interestingly, Johnson & Johnson and Apple recently announced their plans to build off these preliminary results by partnering together in a new project called HEARTLINE. This study will focus on an older population (~ 65 years) of around 150,000 participants who, due to their age, are at a higher risk of AFib. It’s a really exciting time to be in the cardiology field since this is just the beginning of this type of research, which is full of therapeutic potential.

It’s also really thrilling to be able to follow-up with this study, especially since it all started with my father-in-law, who has AFib, being nervous about using wearable technology to detect his condition. I’m excited to share this data with him as well since maybe he’ll feel a little more comfortable using it now.

Examples of the notifications that participants in the Apple Heart Study receive. Courtesy of Apple

Examples of the notifications that participants in the Apple Heart Study receive. Courtesy of Apple

hidden

AHA18: Notes From a Structural Heart Disease Specialist

How can one experience science and scenic beauty together? You know the answer to this, if you attended this year’s annual Scientific Sessions of the American Heart Association (AHA) in the beautiful city of Chicago. AHA18 showcased the latest advancements and studies in the field of cardiovascular medicine and stroke.

 

AHA Coming Back To The Center Stage

I attended AHA Scientific Sessions for the first time when I was an intern. Science from different sub-specialties of cardiovascular and stroke was truly inspiring and triggered curiosity. However, over the years as I specialized in general cardiology, then interventional cardiology and structural heart disease (SHD), it became increasingly difficult to attend all major scientific meetings every year.  Meetings focused on sub-cardiovascular specialties had taken priority in my schedule in last few years. However, this has changed in 2018. As a SHD specialist I realized the need and importance of a multidisciplinary approach, and science that cuts across various specialties. With widespread adoption of heart team and brain team models, we have realized the importance and benefits of collaboration between physician and surgeons across different specialties.  AHA provides a perfect platform to present and promote such multidisciplinary science.

 

How Far We Came in the TAVR World

Two separate studies using national administrative databases reported significant reduction in the complications rates associated with transcatheter aortic valve replacement (TAVR).

In the first study, Dr. Sameer Arora and his colleagues at University of North Carolina School of Medicine, Chapel Hill, evaluated the complication rates following both TAVR and surgical aortic valve replacement (SAVR) using the Nationwide Inpatient Sample1.  They included more than 90,000 patients and reported reduction in all cause mortality (4% to 1%), vascular complications (8% to 5%), acute kidney injury (12% to 10%), need for blood transfusions (31% to 10%), and cardiogenic shock (3% to 1%) in patients who underwent TAVR between 2012 and 2015 [P < 0.001 for all].

However, there was an increase in the need for a permanent pacemaker implantation (2% to 12% %; P < 0.001). They also noted trends towards improvement in outcomes with SAVR during same period. Improvement in device profile and valve design, operator experience, and inclusion of patients with lower baseline risk could explain these outcomes with TAVR.

In the second study, Dr. Rajat Kalra, MBChB and colleagues at University of Minnesota, Minneapolis, analyzed rates of new-onset atrial fibrillation and its association with clinical outcomes among patients who underwent TAVR (N=48,715) and SAVR (N=122,765), also using the Nationwide Inpatient Sample from 2012 to 20152. The study reported rates of new-onset atrial fibrillation as 50.4% and 50.1% for TAVR and SAVR respectively. They also noted higher in-hospital mortality, and post procedure stroke, among patients who had new-onset AFib post TAVR or SAVR.

Results from both of these studies are in coherence with findings from clinical trials and our experience with TAVR. However, due to lack of randomization, long term follow up, potential confounders and potential of inappropriate coding, caution should be exercise in extrapolating results of these studies or comparing TAVR with SAVR based on such data.

 

Flyer from Future

In addition to various studies and presentations from all across the nation and the international scientific community, AHA18 had dedicated sessions for Structural Heart Disease, 3D imaging, and Artificial Intelligence, giving us a glimpse of the near future for SHD. Cardiac imaging is critical to plan and perform any transcatheter based structural heart disease procedure, and 3D printing has potential to revolutionize the treatment planning of patients with SHD as highlighted by Dr. Frank Rybicki (University of Ottawa) during his presentation at AHA18. A potential role of 3D bioprinting for preoperative planning for TAVR and SAVR and the future of this technology was further emphasized in another interesting talk “Personalized Care: Print your own valve,” by Dr. Kamal Khabbaz (Beth Israel Deaconess Medical Center, Harvard Medical School, MA).

My experience during 2018 session has reinforced my believe that AHA has the potential to be ‘The Platform’ to present and promote SHD science.

 

References:

  1. Arora S. Trends in inpatient complications after transcatheter and surgical aortic valve replacement in the TAVR era. Presented at: AHA 2018. November 11, 2018. Chicago, IL.
  2. Kalra R. New-onset atrial fibrillation after aortic valve replacement: evaluation of a national cohort. Presented at: AHA 2018. November 12, 2018. Chicago, IL.

 

hidden

Management of Stroke Patients: A One Man Show or A Tag-Team?

Atrial fibrillation (AF) increases risk of stroke up to 5 folds, resulting in considerable physical, cognitive impairment and high mortality1. Thus, AF related strokes are very expensive to treat compared to non-AF strokes2. Oral anticoagulation is a well-established therapy in the majority of stroke cases3. Warfarin reduces the risk of stroke by 64% and mortality by 30% compared to placebo3.

Recent data from the pinnacle registry presented by ‘Roopinder Sandhu, Edmonton, AB, Canada’ at the Scientific Sessions 2018, highlighted three key challenges in anti-coagulants management in stroke patients4. Data from a national outpatient registry reported over 700,000 patients had a diagnosis of atrial fibrillation5. Although oral anticoagulation use increased over time, around 40% of patients who are eligible for anti-coagulation never got started on therapy5. The second gap is sub-therapeutic dosing. Recent data from the orbit registry evaluated over 5700 patients who were recently started on a new drug and reported that one in eight patients were either underdosed or overdosed6. Further, there was a higher rate of adverse events in patients who had dosing that was sub therapeutic. The third gap is non-adherence. Data from administrative claims based on a large U.S. commercial insurance database, calculated adherence based on the fill date and the days of supply on the pharmacy claims over a median of 1.1 years7. Less than half of patients who were started on a drug therapy reached the threshold of proportion days covered of 80% or higher. This proportion was less for patients who were on Warfarin.

Given the public health consequences of untreated AF, it is necessary to evaluate different strategies to deliver stroke prevention therapy. Data from 30 randomized clinical trials evaluating the impact of pharmacists, versus standard care, showed superior results in the pharmacist care group in reducing systolic blood pressure (by 8 mm HG), diastolic blood pressure (by 4 mm HG) and total cholesterol (by 17 milligrams DL) and LDL (by 13 mg DL)10. This was done through educational intervention and identification of drug related problems followed by early feedback to the treating physician.

Roopinder added a few possible explanations to what could be driving such impact in the Canadian setting. Typically, a general practitioner would be dealing with patients with a higher evidence of chronic diseases. Further, patient demands often exceed the available physician capacity.

While these results collectively suggest that pharmacist led strategies may be a promising way forward because of their accessibility, drug expertise and their ability to build a trusted relationship. A few key things should be considered. First, that anticoagulation remains to be a complicated problem when it comes to individual patients, with many factors playing a role in the decision process including; medical history (as prior bleeding) and patient preferences. Second, while these interventions seem beneficial in the short-term it may lead to the same shortcomings in the long-term with the increase in demand on the pharmacists as the main provider.

Finally, a key question remains, would a collaborative approach between physicians and pharmacists yield better outcomes through reducing the burden on both providers and simultaneously increasing the time allocated to stroke patients on a case-by-case basis?

 

REFERENCES

  1. Developed with the special contribution of the European Heart Rhythm Association (EHRA), Endorsed by the European Association for Cardio-Thoracic Surgery (EACTS), Authors/Task Force Members, Camm, A. J., Kirchhof, P., Lip, G. Y., … & Al-Attar, N. (2010). Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). European heart journal31(19), 2369-2429.
  2. Stewart, S., Murphy, N., Walker, A., McGuire, A., & McMurray, J. J. V. (2004). Cost of an emerging epidemic: an economic analysis of atrial fibrillation in the UK. Heart90(3), 286-292.
  3. Ruff, C. T., Giugliano, R. P., Braunwald, E., Hoffman, E. B., Deenadayalu, N., Ezekowitz, M. D., … & Yamashita, T. (2014). Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. The Lancet383(9921), 955-962.
  4. Sandhu, R. K., Guirguis, L. M., Bungard, T. J., Youngson, E., Dolovich, L., Brehaut, J. C., … & McAlister, F. A. (2018). Evaluating the potential for pharmacists to prescribe oral anticoagulants for atrial fibrillation. Canadian Pharmacists Journal/Revue des Pharmaciens du Canada151(1), 51-61.
  5. Marzec, L. N., Wang, J., Shah, N. D., Chan, P. S., Ting, H. H., Gosch, K. L., … & Maddox, T. M. (2017). Influence of direct oral anticoagulants on rates of oral anticoagulation for atrial fibrillation. Journal of the American College of Cardiology69(20), 2475-2484.
  6. Steinberg, B. A., Peterson, E. D., Kim, S., Thomas, L., Gersh, B. J., Fonarow, G. C., … & Piccini, J. P. (2015). Use and outcomes associated with bridging during anticoagulation interruptions in patients with atrial fibrillation: findings from the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). Circulation131(5), 488-494.
  7. Yao, X., Abraham, N. S., Alexander, G. C., Crown, W., Montori, V. M., Sangaralingham, L. R., … & Noseworthy, P. A. (2016). Effect of adherence to oral anticoagulants on risk of stroke and major bleeding among patients with atrial fibrillation. Journal of the American Heart Association5(2), e003074.
  8. Santschi, V., Chiolero, A., Burnand, B., Colosimo, A. L., & Paradis, G. (2011). Impact of pharmacist care in the management of cardiovascular disease risk factors: a systematic review and meta-analysis of randomized trials. Archives of internal medicine171(16), 1441-1453.

 

hidden

The Future of Wearable Technology & Detecting Atrial Fibrillation at AHA18

Like many of us, I have several family members who experience atrial fibrillation (AFib) regularly, as between 2-6 million people in the United States have this disorder. My father-in-law in particular has experienced difficultly with AFib recently and because he knows I study the heart, he often asks me about different treatment options and advice for handling his disease. Of course since I’m a basic research scientist, I always remind him that I’m not that kind of doctor and gently recommend he talk about it with his medical doctor and receive second opinions. However, when I got the chance to attend the AHA’s Scientific Sessions 2018 for the first time as an AHA Early Career Blogger, I knew I wanted to attend some sessions about AFib so I might have a little more to say for the next time I see my family. As a basic researcher, I don’t often get the often opportunity to hear from physicians about the day-to-day AFib issues they encounter with their patients.

Naturally, I jumped at the chance to attend the “Hey Doc, My Wristband Says I Have AF What Do I Do?” session yesterday afternoon. I was initially drawn to this particular event because my husband and I actually bought my father-in-law a wearable device last year for Christmas when he expressed interest in counting his steps and also keeping an eye on his heart rate, based on a comment from his doctor. Surprisingly though, the gift backfired since my father-in-law’s anxiety about his heart rate skyrocketed after he started wearing the device, because anytime it gave him an “abnormal” heart rate alert, he would get nervous and eventually ended up just staring at the device all day. So we all agreed it would be best if he just stopped wearing it. During this time, I kept wondering how accurate these devices actually are, and if my father-in-law actually was experiencing AFib that regularly, or maybe these were just false positives? Luckily, medical researchers primed to study this question were already on it, because the Apple Heart Study was initiated last November.

This collaboration between Apple and Stanford, spearheaded by Dr. Marco Perez, is a progressive clinical trial that uses data from Apple Watch devices from over 400,000 participants. The main purpose of this unprecedented study is to examine if AFib can be reliably diagnosed from irregular pulse notification data from wearable devices. In this session, Dr. Perez outlined how easy it is for participants for to sign up for the study and how a single reminder email from Apple actually doubled the amount of study participants almost over night, highlighting the power of these types of collaborations. One of the most interesting aspects of this study is how it is all done remotely. Interested participants just have to download the application, where they consent to study and then the algorithm monitors them. If an individual receives an irregular heart rate alert, they are recommended to a local doctor who can then prescribe them a patch monitor, which is mailed to the participants. After the monitor period, the participants simply mail the patch monitor back to Stanford where the scientists analyze the data. If AFib or other cardiac disorders are identified from this data, the participants are then referred to a doctor to get treatment. The clinical trial scientists never even meet the participants.

Dr. Perez mentioned that they are hopeful to have all of the data analyzed by the end of January as they are still collecting data everyday. Some of the most pressing questions this study hopes to answer is how accurate are these irregular heart rate alerts in diagnosing AFib? False positive rates are particularly of interest since many in the community think these devices could be causing alert when none is needed. Also an important thing to consider is how does the user’s behavior change after the alert? I know my father-in-law’s anxiety increased after getting these alerts, but I’m sure some people might find these devices as a comfort, particularly if this study reveals them to be accurate. Since many physicians here at the AHA 2018 Sessions have expressed that their patients are coming into their office with irregular alert data from their wearable devices, I’m sure doctors and users alike are excitedly awaiting the results of this powerful study – I know I am. The most important take home from this study truly has to be the actual size and manner in which it has been conducted. The results of this study have the potential to impact the future of clinical trials in general, since a trial of this magnitude run completely virtually has never been done before.

Picture source: https://www.apple.com/newsroom/2017/11/apple-heart-study-launches-to-identify-irregular-heart-rhythms/

 

hidden

WATCHMAN: An Alternative to Warfarin for the High Risk Patient

“Wisdom consists of the anticipation of consequences”
Norman Cousins

I recently saw Mr. John Doe for atrial fibrillation (AF). Well into his eighties, he enjoys a good quality of life. This elderly gentleman is mostly unaware of his paroxysms of AF. However, he had also suffered a stroke in the past, and as such was managed with warfarin. He was lucky. Recently, he experienced a gastrointestinal hemorrhage, requiring temporary reversal of his anticoagulant in addition to receiving a few pints of blood. There were no apparent clinical triggers for this event. Mr. Doe is not a fictional person but is a typical example of what is a common clinical dilemma: how best to protect against stroke in a patient who is at high risk, yet becomes intolerant to warfarin.

Previously, these patients were commonly switched to aspirin alone as a poor alternative to anticoagulation. Most clinicians would feel apprehensive of taking a gamble switching to novel oral anticoagulants which do not have available reversal agents (at the time this blog was written).

So, what then?

Enter the “Watchman.”

The majority of thromboembolic strokes in patients with AF originate in the left atrial appendage (LAA). The function of this structure is to assist with atrial transport, however during AF, atrial blood flow becomes impaired and stasis can occur in the LAA leading to thrombus formation at this location. Fragmentation and embolization of thrombi can lead to stroke, which is commonly disabling. The presence of comorbid factors such as diabetes, heart failure among other clinical variables can further increase this risk [1].

The last several years has witnessed the development and refinement of procedures referred to as left atrial appendage occlusion. Although there are several of the devices available worldwide, I will refer to the WATCHMAN system which is approved for use in the United States. In brief, the WATCHMAN device resembles a small umbrella (Figure 1). The FDA approved the device for the purpose of preventing embolic stroke with non-valvular AF. The available data that lead to its approval implies a non-inferiority to warfarin [2,3]

the WATCHMAN device resembles a small umbrella

Figure 1. (accessed from www.bostonscientific.com; www.modernhealthcare.com)

The method of device introduction is via a femorally placed venous sheath delivered transseptally (from right to left atrium). The destination of the device is the ostium of the LAA (Figure 2). The ultimate goal of the procedure is to totally exclude the LAA from the chamber, thus preventing flow into and from the LAA, in effect precluding thrombus formation. The procedure is performed with the guidance of transesophageal echocardiography, and typically under general anesthesia. The duration of the implant typically does not exceed an hour. Patients are continued on warfarin during the initial perioperative phase.

the destination of the device is the ostium of the LAA

Figure 2. (Accessed from www.bostonscientific.com; openaccessjournals.com)

Generally, after a forty-five-day period, transesophageal echocardiography is repeated to confirm the absence of peri-device leaks and verify device endothelialization. If the results are favorable, patients can often stop warfarin and switch to antiplatelet therapy. Presently, the available evidence compares WATCHMAN to warfarin, and comparisons to other anticoagulants is lacking.

It appears that enthusiasm for the WATCHMAN appears to be growing. For patients who require long-term warfarin use, but are at risk for hemorrhagic complications, this device appears to be a very good option. Cumulative experience will invariably lead to further improvements in design and greater safety [4,5].
 
References

  1. Lip GY, Lane DA. Stroke prevention in atrial fibrillation: a systematic review. JAMA. 2015;313:1950-62
  2. Holmes DR Jr, Kar S, Price MJ, Whisenant B, Sievert H, Doshi SK, Huber K, Reddy VY Prospective randomized evaluation of the Watchman Left Atrial Appendage Closure device in patients with atrial fibrillation versus long-term warfarin therapy: the PREVAIL trial.J Am Coll Cardiol. 2014;64:1-12
  3. https://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?NCAId=2 81&bc=ACAAAAAAAgAAAA%3d%3d&
  4. Reddy VY1, Doshi SK2, Kar S3, Gibson DN4, Price MJ4, Huber K5, Horton RP6, Buchbinder M7, Neuzil P8, Gordon NT9, Holmes DR Jr10; PREVAIL and PROTECT AF Investigators. 5-Year Outcomes After Left Atrial Appendage Closure: From the PREVAIL and PROTECT AF Trials.J Am Coll Cardiol. 2017;70:2964-2975
  5. Obeyesekere MN.Watchman Device: Left Atrial Appendage Closure For Stroke Prophylaxis In Atrial Fibrillation.J Atr Fibrillation. 2014; 7: 1099

Christian Perzanowski Headshot

Christian Perzanowski is an electrophysiologist in Tampa, FL. His main interests are in ablation techniques for atrial fibrillation and device therapy for congestive heart failure. He reports no conflicts of interests.

Apollo Beach, FL (05/17, CP)

hidden

Deciphering the CABANA trial and what if anything do the results mean to the management of atrial fibrillation?

“The truth is rarely pure and never simple.”
Oscar Wilde

“Facts do not cease to exist because they are ignored.”
Aldous Huxley

As is apparent from my previous blogs, I am very passionate about atrial fibrillation (AF). Undoubtedly, the most common arrhythmia nationally, and likely worldwide, can cause disabling symptoms, lead to a stroke and exacerbate heart failure. In my experience, patients with AF can be categorized as either asymptomatic, or highly affected. Essentially the former are unaware of their diagnosis, and are often found to have AF by serendipity. Life is in fact very easy for them, as well as their clinicians: anticoagulate, rate control and move on.

Now, for those who are symptomatic, there exist management challenges. AF is classified as paroxysmal, which is an intermittent or periodic form of arrhythmia; persistent, which is a sustained form and generally felt to be a progressed state of AF; or permanent, where no interventions are done. There is a paucity of available antiarrhythmic agents to treat and suppress AF. Antiarrhythmic drugs have earned a reputation of not being very effective while causing significant systemic adverse effects. Clinicians who care for symptomatic AF patients have certainly observed them to often experience shortness of breath, chest discomfort, loss of stamina, sensation of tachycardia and in some cases heart failure. Not uncommonly, these symptoms lead to anxiety as well as a compromised quality of life. In short, these patients must be treated.

Over the last decade, the techniques employed to treat AF by catheter-based means have improved in efficacy, even for more advanced forms of persistent AF. Although far from ideal, a number of studies have demonstrated ablation methods (e.g. radiofrequency, referred to colloquially as “heat” or cryoablation, “freezing”) to be superior to attempts at drug suppression. This is no surprise, as ablation addresses the problem directly (e.g. preventing AF from initiating) by calculated tissue destruction. While repeat studies are sometimes needed, the improvement in quality of life and improvement in heart failure class (such as observed with CASTLE-AF, AATAC) are known benefits1,2.

CABANA (Catheter Ablation vs Antiarrhythmic Drug Therapy for Atrial Fibrillation Trial) sought to determine whether AF ablation versus antiarrhythmic drug therapy could prevent a composite endpoint of total mortality, disabling stroke, serious bleeding, or cardiac arrest1. This was a large randomized study with over 2,000 patients. The results, which were presented at the annual Heart Rhythm Society last month, yielded a rather disappointing result: ablation was not superior to drugs for preventing the above composite endpoint2. That’s a rather dubious final score.

In spite of acknowledging what Wilde and Huxley might say, I would like to reconcile several of CABANA’s limitations:

– Personally, I have a grievance with the use of a “composite score” in the above scenario; stroke and “serious bleeding” are in no way equivalent; mechanistically, how would the investigators theorize that ablation could prevent a cardiac arrest?
– Death, while inevitable is indeed a categorical variable, one is either alive or not. Given that the causes of death are innumerable, it does not seem appropriate to consider that ablation could prevent all causes of death. Rather than try to postulate that ablation, or a potpourri of antiarrhythmics could stave of death, a more appropriate measure would be to ascertain prevention of death from heart failure.
– Approximately 25% of patients assigned to drug therapy crossed to ablation. Notably, some sources cited difficulty in enrollment as patients and referring physicians likely felt that ablation would be more beneficial.
– The ablation techniques used, as were the drugs prescribed, were left to the discretion of the treating physicians. Hence, the methods employed were not uniform, and paroxysmal AF cases were pooled with more advanced forms of persistent AF.
– How about continued drug therapy after ablation? The POWDER-AF investigators were able to show less AF burden with continued antiarrhythmic support following AF ablation. This should be expanded upon with larger studies.

From my perspective, I do not believe that CABANA results will affect my practice. Many of us will be curious to see publications regarding future subanalysis. In my opinion, patients who are very symptomatic with AF and have not responded to antiarrhythmics should be treated with AF ablation, and especially those who have developed cardiomyopathy or worsened heart failure as a result of AF6.

References

  1. http://circ.ahajournals.org/content/early/2016/03/30/CIRCULATIONAHA.115.019406
  2. https://www.nejm.org/doi/full/10.1056/NEJMoa1707855
  3. https://clinicaltrials.gov/ct2/show/NCT00911508
  4. https://www.nhlbi.nih.gov/news/2018/atrial-fibrillation-catheter-ablation-or-drug-therapy-results-are
  5. Duytschaever M, Demolder A, Phlips T, Sarkozy A, El Haddad M, Taghji P, Knecht S, Tavernier R, Vandekerckhove Y, De Potter T. Pulmonary vein isolation With vs. without continued antiarrhythmic Drug treatment in subjects with Recurrent Atrial Fibrillation (POWDER AF): results from a multicentre randomized trial. Eur Heart J. 2018;39:1429-1437
  6. https://www.hrsonline.org/Policy-Payment/Clinical-Guidelines-Documents/2017-HRS-EHRA-E CAS-APHRS-SOLAECE-Expert-Consensus-Statement-on-Catheter-and-Surgical-Ablation-of-Atrial-Fibrillation

Christian Perzanowski Headshot
Christian Perzanowski is an electrophysiologist in Tampa, FL. His main interests are in ablation techniques for atrial fibrillation and device therapy for congestive heart failure. He reports no conflicts of interests.

sunset in tampa, florida

Tampa, FL (8/17 CP)

hidden

Shared Decision Making In Cardiac Care

Illustration of seniors with life insurance

Shared decision making (SDM) is an approach both patients and clinicians can use to improve patient education and discussion in decision making. Decision aids are tools that promote SDM by improving patient-clinician communication about all treatment options and how the risks and benefits fit with their personal values and preferences. Today, we’ll chat about SDM in the context of cardiac care, with examples from atrial fibrillation and heart failure, as well as the entire CAD spectrum.

A Chronological Look at SDM
In 2012, Karen Sepucha reflected on shared decision-making and patient decision aids in an editorial for Circulation: Cardiovascular Quality and Outcomes. Two studies published in the same issue evaluated the impact of decision aids in urgent management of acute coronary syndrome (The Chest Pain Choice Decision Aid) and vascular access choice for coronary angiogram procedures. These studies reflect scenarios that are not traditionally thought to be amenable to SDM, but the results show that SDM in the emergency department and regarding technical treatment decisions, such as femoral versus radial access, had a positive impact on patient knowledge and decisional conflict. Sepucha’s concluding statement still rings true today: “Despite considerable evidence from many studies of decision aids, few of these tools are used routinely in practice.”

There are several challenges to using decision tools in practice. Decision aids should be brief and easily incorporated into the workflow of clinical practice, as well as easily accessible in the public domain. In 2015, CMS implemented a policy around healthcare for atrial fibrillation patients requiring all non-implanting physicians to use evidence-based decision tools and SDM practices. A 2017 article by Megan Coylewright and David Holmes in Circulation caution against this CMS mandate for SDM for patients with atrial fibrillation. The authors cite reasons reminiscent of Sepucha’s conclusions in 2012. Coylewright and Holmes point out that there is limited guidance on navigating SDM for patients with atrial fibrillation at risk for stroke. Specifically, while research consistently shows that “decision aids improve patient outcomes including knowledge, engagement, and satisfaction”, SDM has yet to become an integral part of clinical practice for a variety of reasons, both on the patient side and the clinician side. For example, barriers to use of SDM by physicians include insufficient training in the skillsets necessary to implement SDM, such as “inadequate assessment of patient preferences,” in addition to logistic challenges to implementation, whether at the institutional level, the lack of publicly available decision aids, or the time availability during patient-clinician interactions to thoroughly discuss patient preferences.

Atrial Fibrillation
Atrial fibrillation presents a particularly challenging case for optimizing treatment, due to low prescription, low adherence due to side effects and frequent testing, as well as increased risk of negative reactions due to polypharmacy. Thomson et al. found that atrial fibrillation patients at risk of stroke may deicide to forgo treatment with anticoagulants to avoid the medications’ adverse effects, with the knowledge that their stroke risk later on increased. However, professional guidelines on treatment of atrial fibrillation promote SDM and use of evidence-based decision tools while recognizing that inviting patients to participate in care decisions can be challenging to physicians.

A recent systematic review, “Availability of Patient Decision Aids for Stroke Prevention in Atrial Fibrillation” by O’Neill and colleagues summarize the current state of decision aids for patients with atrial fibrillation at risk for stroke and their treating physicians. The current landscape of pharmacologic therapy for stroke reduction includes multiple DOACs, implantable LAA closure devices, aspirin, and warfarin – each treatment with benefits and trade-offs that must be considered “in the context of individual values and preferences and willingness to adhere to therapy”. Many of the decision aids in the studies reviewed by O’Neill et al. did not display all therapeutic choices, were delivered to patients primarily by nonphysicians, and were not publicly available.

Depression and CAD
SDM and decision tools pair nicely with assessment of depression in heart disease patients. In a recent paper, “Identifying and Managing Depression in Patients with CAD,” Aimee Salzer Pragle and Susan Salashor discuss the epidemiology and risk factors, clinical presentation, assessment tools, and treatment options for depression in patients with heart disease. In a 2011 review, Christopher Celano and Jeff Huffman estimated that 20-40% of patients with CAD may suffer from depression, and despite the availability of screening tools brief enough for clinical practice (such as the Patient Health Questionnaire-9 or -2), depression often goes unrecognized in cardiac care. Depression in patients with CAD is associated with progression of heart disease, poor quality of life and physical functioning, repeat cardiac events, and 2-2.5 fold increased risk of mortality [link]. Risk factors for depression in patients with CAD include “younger age, female sex, a history of depression, social isolation, previous cardiac events, and diabetes” and depression can increase risk of suicide, homicide, and substance abuse (which can exacerbate cardiac symptoms and promote further degeneration).

Innovative Frameworks – A Segue to Implementing SDM?
From the clinician side, disease-specific evaluation frameworks inclusive of all relevant aspects of a patient’s health provide another avenue towards optimizing patient-clinician communication. For example, in a recent paper, Gorodeski et al. present a multi-domain framework for managing heart failure and the associated questionnaires and tools that go with each task.

Gorodeski image
These tools include the Mini Nutritional Assessment Short Form (MNA-SF), the Mini-Cog and PHQ-2 (Patient Health Questionnaire) for mental and emotional state, gait speed, timed Up and Go test, FRAIL questionnaire, and ADL/IADL discussion for assessing physical function, as well as inquiries to social support at home, adaptable and safe environment plans, access to nutrition and transportation, as well as abilities and support in medication management (Table 1, Gorodeski et al).

 Does your department or institution use shared decision making or decision aids in practice?

 What barriers to implementation do you see in incorporating these tools into everyday patient interactions?

SDM and Decision Aids Resources
The Ottawa Hospital Research Institute hosts an up-to-date A to Z inventory of patient decision aids, and includes tools for angina, atrial fibrillation, CABG and other cardiac procedures, blood pressure medications, peripheral artery disease surgery, type 2 diabetes, depression, kidney disease and dialysis, and many others. Many of the tools geared towards cardiac care were in the form of informative articles for patients to read, or interactive tutorial-style pages for patients. None that I found were visual or brief enough to be used in clinical practice. Additionally, purely text-based “decision aids” are not useful for low-literacy populations, and online-only resources are not easily accessible for patients who are less tech-savvy. However, the Heart to Heart tool developed by the University of North Carolina General Internal Medicine department provides a user-friendly interface, even for the less technologically-savvy patients, that guides the user through several slides on how to join the discussion of their own treatment with their doctor. Similarly, the AHA Rise above Heart Failure initiative has two resources heart failure patients and physicians might find particularly useful: a guide to overcoming barriers to shared-decision making and a list of questions to ask the doctor. If you are a physician, reviewing these materials provides you with the guidance of what questions and topics to address during the clinic visit.

Quick links to select decision aids related to heart disease:

 

Bailey DeBarmore Headshot

Bailey DeBarmore is a cardiovascular epidemiology PhD student at the University of North Carolina at Chapel Hill. Her research focuses on diabetes, stroke, and heart failure. She tweets @BaileyDeBarmore and blogs at baileydebarmore.com. Find her on LinkedIn and Facebook.