Channeling Health Care Delivery and Implementation Science in Cardiology for Improved Outcomes

The opening session for AHA21 was nothing sort of inspirational. In the opening session, a quote by Dr. Keith Ferdinand, Professor of Medicine and Chair of Preventative Cardiology at Tulane University, really stuck with me. The topic was how is the field of medicine adjusting in the midst of the challenges faced and inequities uncovered by the COVID pandemic? The simple answer: while positive strides have been made, there is much room for improvement. He then went on to expound about the importance of implementation science, as the best science in the world will do you no good if patients are unable to implement physical activity/dietary guidelines, understand when to take the appropriate medications, or receive preventive vaccines in time.

From the American experience with COVID, part of the difficulty in reaching the average American seems to be the emotional gap between patients and either healthcare institutions or providers. The weight evidence from the trials on COVID vaccines are clear on the efficacy and safety, particularly of the mRNA vaccines. However, delivering the messaging in a way the public will accept remains frustrating in many parts of the country. As a result, only 59% of the US population is fully vaccinated, while 68% have received at least one dose, ranking 51st in the world (1). The way we consume information is drastically different from earlier decades. In 2020, a Pew Research poll revealed more than eight-in-ten U.S. adults (86%) received news from a digital device compared to TV (68%), with those under 50 heavily skewed towards digital news consumption.(2) In this same poll, approximately 50% of adults consumed news from social media.(2, 3)  In contrast, in 2015, 75% of American adults had a PCP, dropping to 64% among 30-year-olds.(4)  During the last true global pandemic, that PCP was more likely to make a house call rather than see a patient 1 to 4 times a year.

The common thread for successful interventions seems to be meeting people where they are. Several panelists on the FIT session on navigating misinformation on social media, noted that as many receive news on socia media, they were motivated to explain new studies and correct misinformation on those platforms where people are likely to spend time and digest information. Admittedly, this effect is hard to measure, and many studies thus far are qualitative in nature. More concretely, two exciting trials presented at #AHA21 seem to shed some light on how we can mobilize these neural structures to improve the rates of uptake of proven behavioral & therapeutic modalities, to yield the morbidity and mortality benefits. Simply, how do we get patients to successfully take their indicated medications?

Dr. Jiang He of Tulane University presented the results of the China Rural Hypertension Control Project, an intervention in rural China utilizing nonphysician community health workers (CHW) supervised by local primary care physicians. These CHW—village doctors—were provided with basic medical training (e.g. standardized BP measurement) and tasked to deliver protocolized antihypertensive medications and counsel patients on medication adherence and lifestyle modification (5, 6). Patients were followed monthly and received discounted or free medications and home BP monitors. After 18 months, this cluster-randomized trial, yielded a 37.1% increase in achievement of goal BP control (< 130/80 mm Hg) of subjects living in intervention villages (57%) compared with those living in control villages (19.9%) (P < 0.001). The average drop in BP in the intervention group was greater by 15/7 mm Hg. (6) The use of community health workers is not a new phenomenon in developing countries. They are often trusted community members who receive training to help address community problems. The first use of CHW with no prior formal training to address problems with rural health was in China in the 1930s.(7) This model later spread to Latin America and Southeast Asia in the 1960s with varying levels of success. Certain countries—including Brazil, Bangladesh, and Kenya—have learned from these early struggles to build sustainable successful CHW models (7-9). Our colleagues in infectious disease have successfully integrated CHW to help tackle lack of adherence to Tuberculosis medications causing resistance, by CHW directly observing patients taking their medicines (DOTS).(10) In the US, CHW was recognized as a standard job classification by the US Department of Labor (US Bureau of Labor Statistics, 2010) for the first time in the 2010 census and continue to be underutilized. If the work of Dr. He and colleagues, can be translated to a form suitable to the US health system, this can hold great promise for prevention of the myriad problems stemming from uncontrolled hypertensions.

Dr. Alexander Blood, of Brigham and Women’s Hospital, provides a glimpse of what this may look like. Based on prior work led by Dr. Benjamin Scirica at the same institution(11), the program uses “navigators” to communicate with patients (via phone, text, and email), pharmacists to prescribe and adjust medication as necessary, as well as an algorithm to help educate patients, integrate data, and coordinate care. (12, 13)  As a result, systolic blood pressure was reduced by 10 mm Hg and LDL cholesterol by 45 mg/dL in approximately 10,000 participants enrolled. In an interview with TCTMD, Dr. Blood compared this program to Warfarin management, where the physician writes the initial prescription and the Pharmacy and Warfarin clinic maintain patient’s INR on a weekly basis. It is unlikely that quarterly or biannual visits will yield effective control in patients with poor health literacy. For patients that needed higher intensity care, they were referred to their physician (12, 13). An important aspect of this trial is the results were consistent in populations typically underserved by the medical system–Blacks, Hispanics, and non-English speaking populations. Dr. Blood noted, “…if you structure the way you’re reaching out to patients, engaging them, and communicating with them—if you’re intentional and equitable in the way you make that type of outreach—it’s possible to engage, enroll, and help patients reach maintenance at similar rates across these subpopulations that are traditionally underserved in medicine.” (12)

In summary, while amazing new discoveries & technologies continue to reshape what is possible in cardiology, it is equally important to apply the same ingenuity to scaling up what we already know works and meet people where they are, in order to guide them to best health that science can offer.

 

References:

  1. Hannah Ritchie EM, Lucas Rodés-Guirao, Cameron Appel, Charlie Giattino, Esteban Ortiz-Ospina, Joe Hasell, Bobbie Macdonald, Diana Beltekian and Max Roser (2020) – “Coronavirus Pandemic (COVID-19)”. Published online at OurWorldInData.org. Retrieved from: ‘https://ourworldindata.org/coronavirus’ [Online Resource]. [Available from: https://ourworldindata.org/covid-vaccinations?country=USA.
  2. Shearer E. More than eight-in-ten Americans get news from digital devices2021. Available from: https://www.pewresearch.org/fact-tank/2021/01/12/more-than-eight-in-ten-americans-get-news-from-digital-devices/.
  3. Shearer E, Mitchell A. News Use Across Social Media Platforms in 20202021. Available from: https://www.pewresearch.org/journalism/2021/01/12/news-use-across-social-media-platforms-in-2020/.
  4. Levine DM, Linder JA, Landon BE. Characteristics of Americans With Primary Care and Changes Over Time, 2002-2015. JAMA Intern Med. 2020;180(3):463-6.
  5. Sun Y, Li Z, Guo X, Zhou Y, Ouyang N, Xing L, et al. Rationale and Design of a Cluster Randomized Trial of a Village Doctor-Led Intervention on Hypertension Control in China. Am J Hypertens. 2021;34(8):831-9.
  6. Neale T. Village-Level Intervention Nets Big BP Control Gains in Rural China. TCTMD. 2021. https://www.tctmd.com/news/village-level-intervention-nets-big-bp-control-gains-rural-china [Accessed November 14, 2021]
  7. Perry H. A Brief History of Community Health Worker Programs. https://www.mchip.net/: USAID; 2013. p. 14.
  8. Lehmann U, Sanders D. Community health workers: What do we know about them? The state of the evidence on programmes, activities, costs and impact on health outcomes of using community health workers. School of Public Health, University of the Western Cape, Evidence and Information for Policy DoHRfH; 2007.
  9. Rosenthal EL, Wiggins N, Ingram M, Mayfield-Johnson S, De Zapien JG. Community health workers then and now: an overview of national studies aimed at defining the field. J Ambul Care Manage. 2011;34(3):247-59.
  10. Farmer P, Kim JY. Community based approaches to the control of multidrug resistant tuberculosis: introducing “DOTS-plus”. BMJ. 1998;317(7159):671-4.
  11. Scirica BM, Cannon CP, Fisher NDL, Gaziano TA, Zelle D, Chaney K, et al. Digital Care Transformation: Interim Report From the First 5000 Patients Enrolled in a Remote Algorithm-Based Cardiovascular Risk Management Program to Improve Lipid and Hypertension Control. Circulation. 2021;143(5):507-9.
  12. O’Riordan M. Pharmacist-Led Intervention Slashes LDL and BP in 10,000 Patients. TCTMD. 2021. https://www.tctmd.com/news/pharmacist-led-intervention-slashes-ldl-and-bp-10000-patients?utm_source=TCTMD&utm_medium=email&utm_campaign=Newsletter111321 [Accessed November 14, 2021]
  13. Blood AJ CC, Gordon WJ, et al. Digital care transformation: report from the first 10,000 patients enrolled in a remote algorithm-based cardiovascular risk management program to improve lipid and hypertension control. Presented at: AHA 2021. November 13, 2021.